
Scrum Execution 1

Scrum Execution

Daily
1. In the Scrum Daily every developer gives a short overview of

What has been achieved on the last working day?

What is planned for today?

What are current issues they are facing (dependencies, blockers, capacity/estimation …)?

2. Jira Tickets should always be the Single-Point-of-Truth, so keep it updated/documented 
with everything relating to that ticket

3. Issues, questions and dependencies regarding User Stories should always be tracked as 
comments in the respective Jira tickets as well

4. Everyone should therefore enable notifications on their Jira issues

At the end of each Daily, the QA/Tester should address the following points:

Open questions and clarifications regarding User Stories in UAT.

New bug reports either identified by the QA Tester themselves or through <kanban board or 
google sheet>

If the team agrees that a bug report is indeed a bug, the QA Tester will create the 
respective bug in Jira.

The team will then assign one of the developers (typically the one with the most 
knowledge in that particular topic) for the resolution of the bug.

Depending on the priority of the bug, it will be planned into the current or upcoming 
Sprints.

Keep track of the percentage of Stories that have been pushed to UAT per developer.

Idea Backlog



Scrum Execution 2

A place for gathering very high-level ideas (purely conceptual) about the future of the 
product. Anybody feel free to add your ideas here <google doc or confluence page>

Product Backlog (Epic Drafts)
The product owner should create drafts for Epics (e.g. a feature that he wants to have in the 
product - "Commenting") and then prioritize it:

Copy the <epic draft template> over to the section <epic management confluence page>

Then rename the title of the page to reflect the desired feature.

Fill out the required information as well as possible.

Prioritize Epic Draft by reordering it in the section mentioned above.

The Epic Drafts are meant for initial planning of an Epic only! Once an Epic Draft has been 
translated to actual User Stories in the Jira Backlog (see below), the respective Epic Draft 
document in Confluence becomes obsolete and does not have to be kept in sync!

Obviously, not every User Story is 100% predictable, foreseeable or Epic-related at all. For these 
kinds of User Stories refer to “Creating Stories” below.

Creating Stories (Refinement)
Most User Stories are drafted in the Refinement meetings with the entire team. Here, we go 
through the Epic Drafts (highest priority first) and decompose them down into drafts 
of individual User Stories in the respective template that was created by the Product Owner (see 
above). This includes specifying the title, description and acceptance criteria (maybe even rough 
estimates) for each User Story draft. It is also important to identify dependencies between User 
Stories.

Once all stories are drafted for a given Epic Draft, both the Epic and User Stories are created 
and put into the Jira Backlog (Epic manifestation).

Other User Stories (Post-manifestation and Non-Epic-related)
Obviously, there can be instances when



Scrum Execution 3

additional User Stories are necessary for the completion of an Epic after its 
manifestation, i.e. its User Stories have already been created (e.g. follow-ups, unforeseen 
requirements or dependencies) or-

non-epic related User Stories (e.g. small features etc.) need to be created

These kinds of User Stories can be suggested and drafted in the <user stories draft confluence 
page>document. User Stories in this document will also be discussed in the Refinement 
meeting. Analogous to our Epic Drafts, when a draft for a User Story is completed and 
confirmed it can be created in the Jira Backlog (User Story manifestation) for the Sprint 
Planning.

For changes to existing User Stories refer to “Changing User Stories” on the bottom of this 
document.

External Feature & Change Requests
External Feature & Change Requests can be brought to the developing team’s attention through 
the dedicated page <external feature draft confluence page>

In every Refinement Meeting, the team will go through the new entries from that list and discuss 
it according to the process outlined in the Confluence Page.

Title Naming Conventions
The title of a User Story should always be expressive of its shippable goal. Additionally, we 
utilize several prefixes to further differentiate individual User Stories:

Prefix Meaning/Output

Untitled

Design Mockups and design specifications incl. assets (Invision, Abstract)

Style Design is styled as a component (either as HTML/CSS only -or- Angular component)

Frontend Implementation of logical components in the frontend.

Backend Implementation of logical components in the backend.

https://www.notion.so/5c59098f60464da9a8041358f6063ad2
https://www.notion.so/Design-a581c936b72747f5932138246226b075
https://www.notion.so/Style-489894cbbdc2436e959d30efa38824db
https://www.notion.so/Frontend-f4ee3a48c473433fbfd0aae280636610
https://www.notion.so/Backend-6fc8caf849fe4d108334757dfc23966e


Scrum Execution 4

The prefix is separated by a "|" symbol, e.g. "Design | Button for printing the current page".

Prefixes can also be combined, e.g. "Design + Style" or "Frontend + Backend".

Additional prefixes can be used to further describe the component that is involved, e.g. 
"Backend | Data Provider Service | Create an endpoint for returning basic customer data".

If a User Story cannot be placed into any of the above categories it will simply be created 
without a prefix.

Estimation Meetings
Estimation meetings should be held mainly by the development team (but anyone is welcome to 
join) if there's still User Stories in-estimated or if re-estimations are needed (both in Jira and in 
the previous Epic drafts).

If re-estimations turn out to be necessary, the case should be argued with the Product Owner in 
the Daily and in the comments of an individual User Story (for documentation purposes).

Estimating Story Points
Estimations are made in units of Story Points, 1 Story Point (SP) roughly equals 2 hours worth of 
work. We utilize the Fibonacci sequence for applying Story Point estimations to individual User 
Stories:

Story Points 1 2 3 5 8

User Stories bigger than 8 SPs should always be split into smaller User Stories. For User 
Stories with 8 SPs splitting should at least be considered.

According to Scrum, there should be no correlation between Story Points and actual working 
hours. However, given the billing model being used this correlation is inevitable here.

Overhead Markup
Estimation should always include time buffer (markup) for

Regular & Ad-hoc Meetings (markup calculation example below)

Writing Tests (Unit + Integration)



Scrum Execution 5

Documentation (Confluence, Code, ...)

Internal Merge / Code Reviews

Resolving Merge Conflicts

Deployments to Acceptance (Release Branch)

Pipeline Issue Resolution (communication)

Preparation for UAT (Screenshot, Videos, Test Data & Instructions, ...)

UAT communication + eventual corrections

Preparations for Refinement & Estimations (Draft Ownership)

Bug Fixes

It is recommended to track the actual workload (in hours, incl. overhead) so that each 
developer can assess how good the estimations in terms of Story Points were (accuracy and 
velocity).

Calculating the Regular Meeting Overhead:

Meeting Duration Frequency Per Sprint Duration

Pre-daily 00:10 8 01:20

Daily 00:15 8 02:00

Refinement 01:00 2 02:00

Estimation 01:00 2 02:00

Review, Retro and Planning 02:00 1 02:00

Total 09:20

(based on 2 weeks sprint)

(Design Weekly and ad-hoc Meetings not included in the calculation)

Do not estimate User Stories too low or too narrow as this inevitably causes the quality to 
suffer!



Scrum Execution 6

Design Weekly
As design-related User Stories constitute a special case in our Scrum execution, an independent 
meeting is held once a week (if necessary) in order to

discuss the current design-related User Stories (feedback, iterations, blockers, …) and make 
decisions moving forward.

drafting design-related User Stories for the upcoming Sprints.

The Design Weekly is only to discuss the current open questions and make decisions on the 
details of the designs - it is not intended to be a deadline or a design-specific Review meeting!

There can be situations where these User Stories have an unclear scope or need a certain 
amount of feedback loops and iterations (e.g. “Design a logo for the project”). Hence, some 
User Stories will be estimated not based on their scope but on the amount of effort (i.e. 
iterations) that should be put into it. We mark these kind of User Stories with another Prefix 
“Iteration” (as a component, e.g. “Design | Iteration | Create a logo for <Project name>”).

Sprint Planning
The Sprint Planning marks the beginning of a Sprint.

In the meeting, the Product Owner should state his “Business Objective” and then - together with 
the team - try to draft a “Sprint Goal” from this. For this, the Product Owner (with the team) will 
determine which User Stories (from Jira Backlog) to put into the Sprint Backlog of the next 
Sprint (depending on the total amount of Story Points, dependencies etc.).

The selected User Stories will then be prioritized.

If necessary, it is possible to include a little Refinement session into the Sprint Planning.

Assigning User Stories
Assignments of User Stories to individual developers are best done ad-hoc during the 
Sprint execution. Thus, each developer simply picks the next story and no developer is 
overloaded.

As a general rule, the User Stories with the highest priority should always be done first!



Scrum Execution 7

That being said though, for us there are some natural constraints (mainly scope of the individual 
developers and capacity planning) that make it necessary to already have a rough plan which 
developer is going to process which User Stories during the Sprint Planning.

Review
The Sprint Review (together with the Retrospective) marks the very end of a Sprint.

All User Stories should be done and tested by the time of the Sprint Review. Everything else 
should be considered moving into the next Sprint (i.e. only include shippable deliverables).

After a successful Sprint Review the Sprint (incl. all its User Stories) should be closed by the 
Product Owner.

Retrospective
Feedback about the Sprint by the entire team and what to try to do better next time (focus on 
collaboration and the process itself).

Retrospectives should be held with funretro.io and archived in the Retrospective Log document 
(also refer here for the structure of the boards and the Retrospective in general).

Immediate action items identified in a Retrospective (or elsewhere) can be placed in the next 
Sprint as Tasks while mid- and long-term action items can be kept in a continuous log.

Impediments / Changing User Stories
Impediments of any form (information missing, blockers/dependencies, …) should always 
directly be made aware of! This includes changes that might need to be made for an existing 
User Story like e.g.

Moving a User Story out of or into the current Sprint,

Re-estimation of an existing User Story of the current Sprint,

Changing the scope (description, acceptance criteria, …) of a User Story.

https://funretro.io/


Scrum Execution 8

It is important to note that these changes should never be simply applied by yourself. It is 
required to always discuss the requested changes with the entire team:

1. Mark the impeded User Story with a flag 🚩to indicate a required action.

2. Add a comment to why the individual User Story is impeded (e.g. unforeseen dependency, 
blocked by decision etc.)

a. Tag whoever is needed to clarify the issue (incl. the Product Owner and Team Lead).

b. Additionally, make everyone aware in the next Scrum meeting (next Daily the latest!).

3. Resolve the issue and remove the flag.

Flags should only be removed once the issue was confirmed to be resolved.

In general, changes to existing User Stories should be avoided if possible.

Removing obsolete User Stories
It may happen that manifested User Stories become obsolete and are not needed anymore. In that 
case they should not be deleted but still be kept for future reference.

This must only be done by the Product Owner.

1. Mark User Story with summary prefix * OBSOLETE *.

2. Comment the reason why this User Story was deemed obsolete.

3. Unassign the User Story and unset any estimations put on it.

4. Close the User Story.

Weekly Meetings
Sprints start in round weeks (<year>). Meetings are typically held on <slack, skype, google chat 
or whatever>.



Scrum Execution 9

Name Rhythm TimeName Rhythm Time

(Pre-Daily) Mo. – Fr. 09:05 – 09:15

Daily Mo. – Fr. (except Review) 09:15 – 09:30

Refinement Th. (first week) Tu. (second week) 09:30 – 10:30 09:30 – 11:00

Estimation Th. (second week) 09:15 – 10:45

Design Weekly Mo. (weekly) 13:30 – 14:15

Review, Retrospective & Planning Th. (biweekly, end of sprint) 12:00 – 14:30

Participation
In order to keep the participation high, it is strongly encouraged to turn on the cameras during all 
meetings.

Absence from Scrum meetings
In general, if someone is missing from the Scrum meetings it is expected that either

a written update with the necessary information is given. -or-

all necessary information are available to any of the other present participants and-

all open questions and current blockers have been made clear through flags and 
comments in the respective User Stories.

Sprint Capacity
The actual capacity per Sprint and Developer is tracked in Story Points per Sprint.

Developer Capacity Scope

Prayas Poudel 20 Development

Ayush Bajracharya 16 Design

Manish BC 20 Design, Style

Pradipta Bista 20 Fullstack

Slesha Tuladhar 18 Fullstack

https://www.notion.so/Mo-Fr-0944f5b5f00f4eb6a99250c2158bdb59
https://www.notion.so/Mo-Fr-except-Review-ca24777eab704c3eb7a1b9e658ff2301
https://www.notion.so/Th-first-week-Tu-second-week-f8cae080fcd142e1902fc6f6e5640c16
https://www.notion.so/Th-second-week-9ef424b5c75c4893985c9cb10f0f10b4
https://www.notion.so/Mo-weekly-f1228c73dac24eddb44cb849e993db7c
https://www.notion.so/Th-biweekly-end-of-sprint-4fdd1fe99c8349be86856f5b2a749ac7
https://www.notion.so/Development-a532b8df416543d2a34d44a1562b11aa
https://www.notion.so/Design-98f691c0beae483a8bbb183d83751ec4
https://www.notion.so/Design-Style-459d047aebd0419f89d2424284876bfc
https://www.notion.so/Fullstack-02ee511bbaea46ea857d6f337142b1a2
https://www.notion.so/Fullstack-2e777e3cd9ea4e47a6e6775b38dd18a5


Scrum Execution 10

Developer Capacity Scope

Total 94 Untitled

Exceptions
Vacation / Illness: Capacities will still be met by substitute resources.

Holidays: Local holidays will be excluded from the Sprint's total amount of Story Points.

Billing Model
Currently, <company> bills per Story Point which has some implications on how Scrum is 
executed and lived not only by the development team but also for project management in 
general. The following pages describe how Scrum is applied for <project> giving the current 
billing model.

Idea Proposal 

In order to still be able to make use of all of Scrum's core features and advantages, we’d have 
to find around the billing model impacting the process since it is the contract between <party> 
and <company> that imposes these implications and therefore should be treated as immutable.

One idea would be to decouple billing and the development process by differentiating “billing” 
or “capacity” Story Points and “development” Story Points.

“Billing” or “capacity” Story Points would represent the actual total capacity that the 
developers have per Sprint (e.g. in our case 110 Story Points – with no public holidays, extra 
resources etc.). This is always the amount of work that has been put into the Sprint by the 
developers and equals the Story Points that would be billed per Sprint by <company>. These 
Story Points don’t have any other purpose and will not be used in any part of the development 
process and are thus entirely decoupled.

“Development” Story Points on the other hand can then be used for their original purpose 
and will be utilized to execute the Scrum process to its full potential, e.g.

defining User Stories as they are meant to be (not splitting Frontend, Backend, Design etc.),

https://www.notion.so/9093b6fe0bda4b76be18aa10f770f23b


Scrum Execution 11

better team work as User Stories are always a team effort (requiring most of the team to 
work on a single User Story),

Story Points indicate the complexity of User Stories (not the actual effort),

less pressure on Estimation, Sprint Planning meetings etc.,

less pressure to exactly match workload and estimations,

more flexibility for the whole process in general.

…

The “Development” Story Points don’t have any relation to the “Capacity” Story Points and 
thus are irrelevant for billing entirely!

To be discussed: Overtime, etc.!

Story & Development Workflow 
User Story Workflow
State “To Do”

Developer picks a User Story to work on (depending on their priority) either from the list of yet 
unassigned User Stories or from the User Stories that have already been assigned to 
himself/herself. 

State “In Progress” 
Developer implements the User Story - see section "Development Workflow" for a detailed 
explanation of this step. 

State “(Internal) Review” 
Development work on the story was finished and a merge request was created. The merge 
request will be reviewed by (and discussed with) another developer and then merged to the 
development branch (see “Development Workflow”). 

State “Testing” 
After a merge request was confirmed and closed, the User Story is reflected on the development 
stage – for making it ready for testing by an external tester, it should additionally be pushed to 
the acceptance stage (using our release branches) like so:



Scrum Execution 12

Pull the branch develop

Checkout and pull the current release branch. It has the form release/0.<sprint number>.0.

Run git merge --no-ff develop to merge the current state of the develop branch into the 
release branch.

Confirm the commit message. Per default the “Vim” editor will open. You can confirm the 
commit message there by typing :wq and hitting enter

Push the release branch.

All required documentation for successful testing (e.g. Postman collections, walkthrough 
descriptions, videos, etc.) should be added to the User Story as a comment. 
We decided not to assign the User Stories to the tester anymore as this causes a lot of confusion. 
Same goes assigning it to the Product Owner when a User Story is done. Thus, the User Story 
always stays assigned to the developer that integrated it.

Instead, the tester should be tagged along with the documentation for testing as a comment of the 
individual User Story. In addition to that, he should always check for new testable User Stories 
using the Sprint Board himself.

Scope of Testing 
• In general, all User Stories should be officially tested. 
• Design Stories are reviewed by the Product Owner himself either during the weekly Design 
meetings or in the Sprint Review. 

User Stories should be made available for testing as soon as possible from the beginning of the 
Sprint (and not just towards the end of it)! 

State “Done” 
Story was successfully tested and can be closed by the Product Owner. 

Development Workflow
To be discussed and filled with the entire development team. <team lead>



Scrum Execution 13


